Windows Attack - Gain Enterprise Admin Privileges in 5 Minutes

Compass Security AG, Daniel Stirnimann
Introduction

Scenario 1

- Your employees have a personal computer which has been setup by the internal IT. Support personal can access the computer remotely for administrative access. Can an employee take advantage of this fact and use the login credentials of the IT staff to escalate domain privileges?
Scenario 2

- Your webserver (IIS) is reachable from the Internet. The webserver is joined to the domain and support personal can access the computer remotely for administrative access. Can a remote attacker who has compromised the webserver take advantage of this fact and use the login credentials of the IT staff to escalate domain privileges?
Introduction

Goal of this presentation

- Bring awareness to this topic. It’s an old topic but many companies have not taken appropriate measures yet or don’t fully understand the security implications.

Questions I want to answer in this talk

- Under what circumstances does Microsoft Windows cache credentials?
- What are the requirements to successfully launch pass-the-hash attacks?
- How can we protect from this threat?
5 minutes...

Demo
Scenario:

- Domain Administrator has previously logged in on to the server.
- Attacker or malicious user has gained root access onto the server and wants to extract cached credentials.
Agenda

1. Microsoft Windows Authentication
2. Obtaining the Hash
3. Using The Hash
4. Mitigation Steps
Microsoft Windows Authentication
What is Pass-the-hash?

“Pass-the-hash” allows an attacker to use LM & NTLM hashes to authenticate to a remote host (using NTLM auth) without having to brute-force those hashes to obtain the cleartext password.

In what scenarios are LM & NTLM hashes used?

A computer joined to the Windows Domain will remember the domain credentials so that in offline-mode the user can still logon.

History

First published (theory & exploit code) in 1997 by Paul Ashton (http://www.securityfocus.com/bid/233/discuss)

Very popular since tool available for the Windows authentication process by Marcus Murray of Truesec (Sweden) during Microsoft TechED 2007
Windows Authentication History

Prior Windows NT
- LM Hash used in the LAN Manager authentication protocol

Windows NT
- NTLM Hash used in the NTLMv1 authentication protocol

Windows NT, SP4
- NTLM Hash used in the NTLMv2 authentication protocol

Windows 2000
- Kerberos authentication protocol is used by default

Windows 7, Windows Server 2008 R2
- NTLM authentication protocol can be disabled completely
 - Default: LM & NTLMv1 disabled, NTLMv2 enabled
 - Pure Kerberos environment can be setup
Response differs depending on authentication protocol version used
- No LM, NTLM hashes are sent over the wire.
- Having LM/NTLM Hashes allows to calculate response
- LM/NTLM Hashes = cleartext password
Windows Authentication

Kerberos (default since Win2000)

- Kerberos systems pass cryptographic key-protected authentication “tickets” between participating services.
- User’s password (NTLM hash) is converted to a pre-authentication encrypted key that is stored in the workstation's credential cache and can be used by whatever authentication provider is indicated for the logon type.

Kerberos does not solve the problem completely.

- Currently no tools support Pass-The-Hash attack for Kerberos
- In either case, attack shifts to Kerberos…
 - See Compass Event 2007 - Kerberos Attacks (Röthlisberger, 2007)
 - See Taming the beast: Assess Kerberos-protected networks (Bouillon, 2009)
Obtaining the Hash
Obtaining the Hash

Obtaining a hash requires local administrator privileges.

Which hashes (LM, NTLM) are exposed depends on the configuration.
Hash exposed in different Scenarios

Interactive
- Logon to a local computer to which you have direct physical access.
 - at the physical workstation
 - via Terminal Services, via Remote Desktop
 - run as..

Network
- During network logon, the process does not use the logon dialog boxes, such as the Log On to Windows dialog box, to collect data. Instead, previously established credentials or another method to collect credentials is used.
 - Net Use, Explorer, Net View
Obtaining the Hash

<table>
<thead>
<tr>
<th>Operating System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
</tr>
<tr>
<td>LSA process: Interactive logon session</td>
</tr>
<tr>
<td>Disk</td>
</tr>
<tr>
<td>SAM: Local users</td>
</tr>
<tr>
<td>Registry: Cached domain credentials</td>
</tr>
</tbody>
</table>

Memory
- During process running time (e.g. runas command, VNC session)

Disk
- Hash available throughout a reboot of the operating system
- Cleaning or preventing the hash from being stored requires a more restrict OS hardening
Obtaining the Hash

Memory
- Dump Hashes stored in memory for active sessions
 - Pass-The-Hash-Toolkit (whosthere)
 - Gsecdump
 - Pwdump7
 - msvctl

Disk
- Dump SAM database
 - Cain & Abel, pwdump1/2/3/4
 - c:\windows\repair\sam
 - %systemroot%\system32\config\SAM
Obtaining the Hash

Tested Scenarios

1. Accounts that are on the system (e.g. initial set-up)
 - Not local admin account but IT support users who have logged on previously to setup computer

2. User B who uses workstation of user A (physical access)

3. User B who uses workstation of user A (remote desktop)

4. Remote access of user using VNC

5. Credentials provided for "run as..."

6. Credentials provided for mounting a share ("net use...")
Test Scenarios

1. Accounts that are on the system (initial set-up)
 ✦ Password hash is stored in the registry for the last 10 domain logons

2. User B who uses workstation of user A (physical access)
 ✦ Password hash is stored in the registry for the last 10 domain logons

3. User B who uses terminal service on server
 ✦ Password hash is stored on the terminal server for as long as the session is active. Same applies to Remote Desktop on a workstation.

4. User B who uses VNC to remote access workstation and session of user A
 ✦ Password hash is stored on the workstation of user A for as long as the session is active.
Test Scenarios

5. Credentials provided for "run as..."
 - Hash is stored in memory on the local system as long as the "run as..." process is running.

6. Credentials provided for mounting a share
 - Mounting a network share results in a network authentication.
 - The hashes do not appear in the memory of the LSA process (interactive logon).
Obtaining the Hash

Other Scenarios?
- Credentials in the context of automatic software distribution
- Credentials in the context of full hard disk encryption

What about PKI/Smartcards?
- The fact that passwords will be changed into long randomized passwords when you implement smartcard doesn’t change anything. The hash is still there and we are simply using that hash, not the password.

Note:
- The security settings in Windows can’t force smart-card-based logon for network access, only interactive.
- LM/NTLM can still be used for network logon event if the users are using smartcards to authenticate
Using the Hash
Using the Hash

Brute-Force, Dictionary-Attack
- Gain the plain text passwords and authenticate against other services with the revealed credentials.
- Feasibility on this attack depends on the exposed Hash and the strength of the password. Typically, LM hashes are cracked within a few hours and NTLM hashes within a few days or weeks.

Rainbow-Table Attack
- Also known as pre-computed hash attack.
- Pre-generated hashes of a password are stored in a file and can be looked up within seconds.
- The RainbowCrack Project (http://project-rainbowcrack.com/) provides a tool to pre-compute rainbow-tables for the following hash algorithm: LM, NTLM, MD5, SHA1, MYSQLSHA1, HALFLMCHALL, NTLMCHALL, ORACLE-SYSTEM, MD5-HALF
Using the Hash

Pass-The-Hash Attack
- Passing the hash is an attack based on having a valid set of credentials (a username and its password hash) and authenticating to a remote system as that user. The attacker does not need to recover the plaintext password.

Tools
- Pass the Hash Toolkit v.1.4 (whosthere.exe, iam.exe)
- Hash dumper (local SAM and memory)
 Changes users cached NTLM credentials, so that any Windows tool can use the cached identity.
- msvctl from Truesec
 Hash dumper (local SAM and memory) and runas like tool with Hash support
- gsecdump from Truesec
 Hash dumper (local SAM and memory)
-Pwdump7
 Hash dumper (local SAM)
- Metasploit
- Nessus
Anti-Virus Detection Rate by www.virustotal.com

<table>
<thead>
<tr>
<th>Tool</th>
<th>Detection Rate</th>
<th>Submission Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test hash usage tool:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iam.exe (Pass the Hash Toolkit v.1.4)</td>
<td>27/42 (64.3%)</td>
<td>16.07.2010</td>
</tr>
<tr>
<td>Test hash dump tool:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>whostrere.exe (Pass the Hash Toolkit v.1.4)</td>
<td>17/42 (40.5%)</td>
<td>16.07.2010</td>
</tr>
<tr>
<td>Test hash dump and hash usage tool:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>msvctl.exe (v0.3 from Truesec)</td>
<td>33/40 (82.50%)</td>
<td>26.05.2010</td>
</tr>
<tr>
<td>Test hash dump tool:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gsecdump.exe (v0.6 from Truesec)</td>
<td>38/42 (90.5%)</td>
<td>27.07.2010</td>
</tr>
<tr>
<td>Test hash dump tool:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pwdump7.exe</td>
<td>27/41 (65.9%)</td>
<td>25.07.2010</td>
</tr>
</tbody>
</table>
Mitigation Steps
Least-privilege security principle

- Do not give regular employees local administrator rights on their computers. This drastically reduces the number of users that can steal other users password hashes.

- Only use your domain administrator credentials to logon to domain controllers. Do never logon on to member servers especially terminal servers or workstations with your domain administrator credentials.

- Domain administrators should have a separate delegated administrator account that they use to logon to member servers and workstations that does not have domain administrator rights.

- Limit the use of service accounts that have domain administrator rights.
Least-privilege security principle can also be enforced

- Deny access to this computer from the network
- Deny logon as a batch job
- Deny logon as a service
- Deny logon locally
- Deny logon through Terminal Service
Mitigation

Monitoring

Privilege Use (System Log)
- Look for all audit events with the identification (ID) 552, which indicates explicit credentials were used to logon from another account. Configure high priority alerts on this event ID and immediately review if this event occurs. Some legit service accounts may trigger this ID, so filtering may be necessary. But a savvy hacker would impersonate a service account so it might be hard to distinguish from legit activity.

Anti-Virus Process
- The tested tools to dump the hashes (e.g. gsecdump.exe) or impersonate as another user (e.g. iam.exe) are identified by well known Anti Virus products such as Symantec. So, disabled or uninstalled Anti-Virus products should cause an alert as well.
Mitigation

Education

Checklist

- Support and administrative personnel should be informed about the danger of certain access and authentication methods. A list of DOs and DON'Ts should be created. Examples:

- After having logged on, on a computer with your support account and finished your work, require that the user logs on with his domain account or change your support account's password. This procedure makes most sense in combination with the GPO setting of "Number of previous logons to cache" set to one.
Mitigation

Protect your password hash

Patch-Management

- Keep all computers up to date with the latest operating system and application patches. A user that is not typically an administrator may use a known exploit in the OS or application to elevate their rights to local admin and thus get access to the cached hashes.

Hardening

- Restrict GPO settings to limit the exposure of LM and NTLM hashes by disabling LM, NTLMv1 or even NTLMv2 authentication protocols (pure Kerberos environment).
Protect your password hash

Cached Domain Logons

- By default, NT caches the logon credentials for the past 10 users who logged on interactively (CachedLogonsCount)
- Consider to reduce this setting to 1 logon only.
 - Interactive Logon: Number of previous logons to cache: 1 Logon
- Note: This requires that after a high privileged user has logged on to a computer, he demands that the "normal" users must logon first to make sure his password hash is not cached anymore
Protect your password hash

Local SAM Credentials

- This setting defines that local SAM credentials are stored as LM hashes as well. For example, the local administrator account's hash is stored as an LM and NTLM hash.
- Replace outdated Windows systems (Windows 95, 98 or NT 4) and define the following settings:
 - Network Security: Do not store LAN Manager hash value on next password change: Enabled
Protect your password hash

Active LSA Session Credentials
-
If a user is authenticating on the system, the password hashes of this user are stored in memory. The hashes remain in the memory as long as the LSA session is active.
-
Even with Kerberos the NTLM hash of the password is stored. However,
-
Replace outdated windows systems (Windows 95, 98 or NT 4) and define the following settings:
 - **Network Security: LAN Manager authentication level: Send NTLMv2 response only. Refuse LM**
 - **Best Setting (no Windows 2000 dependencies):**
 - **Network Security: LAN Manager authentication level: Send NTLMv2 response only. Refuse LM & NTLM**
 - **Outlook to Windows 7, Windows 2008 R2. NTLM can be disabled altogether in these environments. See settings of Network Security: Restrict NTLM.**
Other Scenarios

What about other scenarios?

- Client staging process during network boot (PXE) operates with an install user which has domain administrative privileges. Attacker steals username and password of domain user from the scripts.

- Using tools such as lsrunase/superscript to run a process with higher privileges in scripts. User credentials provided in an encrypted form but encrypted credentials may be used insecurely. http://www.csnc.ch/misc/files/advisories/CVE-2007-6340.txt

- Insecure netlogon-scripts

- Shatter Attack, Design flaw in the Windows API which is abused to run shell code with the privileges of the target process (VPN-Client, Anti-Virus, VNC) http://www.csnc.ch/misc/files/publications/ShatterAttack_CSNC.pdf

- Man-In-The-Middle Attacks (ARP Spoofing, Network Traffic Sniffing)
Questions?
References

- Emmanuel Bouillon (2009) Taming the beast: Assess Kerberos-protected networks
References

 http://www.coresecurity.com/content/modifying-windows-nt-logon-credential
- Microsoft TechNet (November 03, 2005). Understanding Logon and Authentication
- Microsoft TechNet (January 22, 2009). How Interactive Logon Works